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ABSTRACT 

Joint maritime operational planning is the difficult task of assigning various 

platforms to accomplish a multitude of missions in several areas of operations. 

The task becomes more difficult as resources are limited, mission requirements 

evolve, and platform capabilities vary. Emerging threats and technology in the 

undersea domain have created renewed interest and increased the priority of 

undersea warfare (USW) planning.  

This thesis develops and provides a proof-of-concept for a decision-

support tool to aid operational planning in a USW environment. Specifically, it 

provides an optimization model with an optimal solution that maximizes multi-

mission achievement in a theater USW environment through the scheduling of 

surface, sub-surface, and air assets over a non-fixed time horizon.  

Tactics and their mathematical representation are an input to our model.  

This makes the model easily adapted to any USW scenario and other warfare 

areas where mission achievement can be measured quantitatively.   
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EXECUTIVE SUMMARY 

Joint maritime operational planning is the difficult task of assigning various 

platforms to accomplish a multitude of missions in several areas of operations. 

The task becomes more challenging as resources are limited, mission 

requirements evolve, and platform capabilities vary. Technology advancement in 

unmanned underwater vehicles (UUV) further complicates planning efforts as the 

full tactical implications still have yet to be realized. Despite the complications 

associated with planning, emerging threats in the undersea domain have created 

renewed interest and increased the priority of undersea warfare (USW) planning. 

The Navy planning process often uses whiteboards, simple spreadsheets, 

and butcher-block paper to determine the ends, ways, and means of an 

operation and develop courses of action. This manual planning is prone to error, 

lengthy in process, and does not lend itself to trade-off analysis. 

To address the limitations of the current planning process, the Operations 

Department at the Naval Postgraduate School has continued research into 

scientific and mathematical-based decision-support tools with the Navy Mission 

Planner (NMP) and the Navy Operational Planner (NOP). The NMP is a multi-

ship, multi-mission assignment planning aid that produces near optimal 

employment schedules on a fixed-time horizon. However, because operational 

planning does not occur on a fixed-time horizon, the first iteration of the NOP was 

developed. NOP addresses the issue of optimizing mission assignments without 

a fixed horizon. It introduced the concept of levels of effort, a way to track 

progress toward the completion of a mission through the application of ship-time. 

Because NOP was presented as a Mine Warfare module, it did not address 

platforms with varying capabilities or logistic constraints. 

This research applies the NMP concept of missions located in different 

geographical areas and the NOP concept of a non-fixed time horizon to develop 

an optimization-based decision aid to support maritime operational planning in a 



 xvi

USW environment. Rather than applying ship-time to a mission, NOP–USW 

chooses the best combination of ships to apply over a small period of time. This 

thesis successfully establishes proof-of-concept with an integer linear 

programming formulation that provides a structure to tie current tactical models to 

campaign planning and accounts for mission requirements and logistics. 
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I. INTRODUCTION 

A. NAVY OPERATIONAL PLANNING 

Joint maritime operational planning is the difficult task of assigning various 

platforms to accomplish a multitude of missions in several areas of operations. 

The task becomes more challenging as resources are limited, mission 

requirements evolve, and platform capabilities vary. Technological advancement 

in unmanned underwater vehicles (UUV) further complicates planning efforts as 

the full tactical implications still have yet to be realized. Despite the complications 

associated with planning, emerging threats in the undersea domain have created 

renewed interest and has increased the priority of undersea warfare (USW) 

planning. 

1. Maritime Planning 

As discussed in Deleon (2015), maritime planning for contested 

environments is conducted at Maritime Operations Centers where commanders 

rely on their staff’s expertise and proficiency to provide a level of planning and 

execution across a wide range of military operations. The tactical employment of 

assets has evolved as the technology on multi-mission platforms has advanced. 

To aid staff in determining the best tactical employment, there are now several 

computer-based planning aids. In anti-submarine warfare (ASW), the Undersea 

Warfare-Decision Support System (USW–DSS) is the primary tool used to help 

real time decision-making (McInvale 2016).  

2. Navy Planning Process 

As described in Deleon (2015), the Navy Planning Process (NPP) is a six-

step progression that is conducted continuously to help commanders process a 

multitude of information, create a coherent plan, and reevaluate as conditions 

change. NPP often uses whiteboards, simple spreadsheets, and butcher-block 

paper to determine the ends, ways, and means of an operation and develop 
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courses of action. This manual planning is prone to error, lengthy in process, and 

does not lend itself to trade-off analysis. As the scope of the operations become 

larger, with more assets, missions, and threats to manage, the increased 

difficulty of the planning task can cause commanders to rely heavily on 

reactionary planning and subsequently make long-range planning a low priority 

(Deleon 2015). A tool that connects operational objectives to local area tactics 

can provide a tremendous amount of information and relief from burden while a 

commander and his staff plan maritime operations.  

B. LITERATURE REVIEW  

To address the limitations of the current planning process, the Navy has 

continued research into scientific and mathematical-based decision-support 

tools. Currently implemented, but still being developed, in select Navy platforms 

is USW–DSS, a tactical decision aid. In the Department of Operations Research 

at the Naval Postgraduate School, the research into decision-support tools has 

led faculty and students to the development of the Navy Mission Planner (NMP) 

(Dugan 2007) and the Navy Operational Planner (NOP) (Deleon 2015) 

1. Undersea Warfare Decision Support System  

USW–DSS is the only tool currently available that aids the ASW 

commander in planning, coordinating, establishing and maintaining a common 

tactical picture (CTP) and in executing tactical control (Department of Navy, 

Naval Sea Systems Command 2016). USW–DSS develops plans for tactical 

engagements by using current environmental information and sensor capabilities 

to create asset path geometry to achieve the highest level of cumulative 

detection probability (CDP) against specific adversaries in a fixed region. 

Although it is an excellent tool for planning tactics it does not aid the commander 

in deciding which assets to make available when there are multiple missions 

competing for assets. 
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2. Navy Mission Planner 

The NMP is a multi-ship, multi-mission assignment planning aid that 

produces near-optimal employment schedules on a fixed time horizon. The 

model relies on a predefined set of mission requirements, ship capabilities, and 

an enormous list of possible schedules. NMP provides the initial concept of multi-

missions associated to geographical areas (Deleon 2015). This initial model was 

cumbersome but through follow-on research by Silva (2009) and Hallman (2009), 

the computational burden was reduced, logistic planning capabilities were 

included, and was proven effective during the planning of Trident Warrior 2009 

(Deleon 2015). 

3. Navy Operational Planner 

The purpose of the NOP is to take the concepts from NMP, a logistics 

model, and apply them to operational planning, which does not occur on a fixed 

time horizon. The first iteration of NOP is presented as a Mine Warfare module 

and addresses the issue of optimizing mission assignments without a fixed 

horizon. It is designed to advise theater commanders on how to allocate multiple 

ships to multiple missions in order to complete those missions to a prescribed 

level and reduce the overall time for forces to advance to the next phase of the 

campaign. The research introduces the concept of levels of effort, a way to track 

progress toward the completion of a mission through the application of ship-time. 

Although the underlying purpose of the NOP is to provide a model that can 

be tailored to other warfare areas, there are two issues that prevent adaptation. 

The first is the assumption that the application of one ship-day always results in 

the same amount of progress, or achievement, for a mission. When the 

capabilities of the platforms can vary this assumption is no longer true. The 

second issue is that the NOP formulation did not account for several logistic 

considerations that are part of planning, such as the distance between missions 

and the at-sea (or on-station) endurance of the platforms. 
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4. Issues with Adapting NOP to Other Mission Areas 

The NOP uses the concept of applying ship-time in its formulation. 

Illustrated in Figure 1 is a piecewise linear from of the equation 

1 tAchievement e   , where Achievement is the probability that a mine field has 

been cleared,  is the rate of clearance for a single Mine Sweeper (MCM), and t 

is the amount of time a ship has been sweeping. The NOP assumption is that all 

ships have the same   and therefore have the same curve.  

Figure 1.  Example NOP Linearized Level-of-Effort Curve 

 
An example of the application of ship-time: Accomplishing the mission from 0.0 to 
0.6 takes five ship-days of effort. This can be accomplished with one ship over 
five days or five ships over one day. Both options will give the same result. 

However, anti-submarine warfare is not done by a single platform type; 

instead, different platforms have different values of   for the same mission. 

Using a random search as a conservative example, the equation appears the 

same as the mine-clearing model, however   has a slightly different meaning as 

a search-effectiveness rate equal to 
  *  

 

Sensor Sweep Width Searcher Velocity

Search Area
. 


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Therefore, as capabilities vary between assets, so does the corresponding  . If a 

set of n assets with parameters 1 2, , , n    are simultaneously searching, the 

resulting equation is 1 2( ... )*1 n tAchievement e        , where t is now the total ship-

time spent searching (see Figure 2).  

Figure 2.  Level-of-Effort Curve with Varying Platform Capabilities 

 
This graph is derived using the same achievement equation from NOP but with 
three different gamma values. Platform 1 has a value of .2, platform 2 has a 
value of .4 with a combined platform value of .6. 

Figure 2 illustrates how the curves vary, and therefore how the simple 

concept of ship-time cannot be directly applied in NOP–USW; interchanging of 

number of platforms and ship-days applied is not possible. An achievement curve 

in NOP–USW may look more like Figure 3, where the curve is not smooth and, in 

particular, where the rate of increase depends on the combination of searching 

platforms that are active in any given time period. 
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Figure 3.  Single Mission NOP–USW 

 
This graph shows how a single mission could progress with two platforms that 
have different . Platform 1 searches until time 6 when it is joined by platform 2. 

At time 10, platform 1 departs and platform 2 completes the search.  


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II. NAVY OPERATIONAL PLANNER–UNDERSEA WARFARE 

A. DESCRIPTION 

This research applies the NMP concept of missions located in different 

geographical areas and the NOP concept of a non-fixed time horizon to develop 

an optimization-based decision aid to support maritime operational planning in a 

USW environment. This type of decision aid will give theater commanders more 

confidence with the effort it may take to have sea control and the timing it will 

take to transition between phases of operations. 

1. Reconceptualizing the Problem 

Because we need to account for heterogeneous assets that can cooperate 

in USW missions, our formulation for NOP–USW is significantly different from 

previous research. Here we present the primary modeling features of NOP–USW 

in order to motivate our mathematical programming formulation. 

a. Discrete Time Steps 

NOP–USW suggests operational plans over a set of discrete time steps. 

Depending on the design of the scenario, such as the size of the missions and 

their geographic distances, and various platform characteristics the resolution for 

time could be one hour to one day. The length of each time step that is required 

for each scenario is a result of the operational tempo of the assets in the 

scenario. Fast moving assets such as aircraft will need a higher resolution where 

the opposite is required for a slower moving asset such as a submarine. 

Rather than applying total ship-time to a mission, NOP–USW chooses a 

combination of platforms to apply over each time period, and calculates the 

increase in achievement that results from that particular combination of assets. 

Different types of platforms can work together in combinations to achieve faster 

clearing rates than if they were independent. This choice is based on progress 

already achieved and the relative rate of return of the different combinations. 
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b. Achievement 

The level of achievement of a mission is not defined by a continuous 

function of time but via a set of discrete achievement values. Reaching a 

particular achievement value depends on the prior value reached in the previous 

time step and the combination applied. In some cases no assets are applied, we 

represent this with an “empty” combination which can eventually lead to a decay 

in achievement. The set of achievement levels is indexed in our models by k, and 

the actual achievement level associated with each k is ka  (see Figure 4). 

Figure 4.  Single Transition of Achievement 

 

This figure shows the discrete levels of achievement available from a single level 
of achievement from a previous time step. In this case there are three 
combinations of platforms that will improve the level of achievement and one 
case where a mission decays. 

When these single transitions are applied over many time steps, the 

increases in achievement levels begin to look like recognizable mission progress 

(see Figure 5). 
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Figure 5.  Single Mission Achievement 

 
The curve shows a choice of combinations over 14 time steps. In the first 6 
steps, platform 1 is achieving the mission to the .4 level by itself. At t=6, platform 
2 joins the mission and combined gammas are used for an additional 4 time 
steps taking the achievement up to .8. At t=10, platform 1 departs and platform 2 
makes the final jumps in achievement. 

2. Predecessors of k 

In order to determine whether a particular plan has achieved a value ka  by 

time t, we calculated the set of all possible levels of achievement from which 

level k could be reached and, for each of those levels, the corresponding 

combination that provides the transition to level k. We refer to these levels as the 

predecessors of k (see Figure 6). pre(k) is the set of all combinations of platforms 

that can lead to k from different preceding levels of achievement. 
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Figure 6.  Single Transition of pre(k) 

 

This figure shows the discrete levels of achievement that lead to a single level of 
achievement in the next time step. In this case there are three combinations of 
platforms that work to achieve k30 and one case where mission decay (because 
no assets are assigned to that mission) leads to k30. 

The development of pre(k) is based on tactical models. The increase or 

decrease from one ka  to another by all platforms and combinations is determined 

by fitting analytical models to the achievement scale (see Figure 7).  In USW 

these models generally fall into three categories: area search, barrier search, and 

mine clearance. Because of the exponential nature of these models the spacing 

of k variables from zero to one is logarithmic to give higher resolution at the 

upper values where it generally takes more effort in time for a platform to achieve 

smaller increases. 
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Figure 7.  Developing pre(k) 

 
Using the same scenario as Figure 5, Figure 7 shows achievement rates as a 
result of choosing the best available combination defined by pre(k). 

3. New Concepts 

Three concepts are considered in NOP–USW that are not in previous 

research: time phasing of missions, mutually exclusive missions, and asset 

availability. Time phasing of missions allows a commander to plan in longer time 

horizons. In ASW, the uncertainty of a target’s position grows as time increases 

without detections. This uncertainty growth is modeled in several ways but using 

that information a commander could choose to have missions become available 

and then unavailable at different time steps. Mutually exclusive missions give 

flexibility so that missions that occur in the same location but are counter-

productive are not assigned to assets at the same time. Asset availability helps a 

theater commander in that all of his assets may not be available on day one of 

the operation and may still be transiting from another theater. 

B. MULTI-MISSION ACHIEVEMENT MODEL 

1. Sets and Indices [Cardinality] 

 Time periods in planning horizon [~36] 
 

 Set of missions [~4] 

t T

mM
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 Discrete levels of achievement [~100] 

 

 Set of specific platforms [~3] 
 

 Set of combinations of platforms [~7] 
 

cp CP   Platform p is in combination c 

 

tm TM   Mission m exists in period t 

 
 

 pre k  Set of (k’,c) conditions that precede achievement level k. 

pre(k30)={[k5,(ship,sub)],[k15,(ship,helo)],[k20,(ship)],…} 
 

tp TP
 
 Platform p available in period t 

 

2. Derived Set 

tc TC  Combination c available in period t 

 

3. Data [Units] 

 

ka  Numerical value of achievement level k [0.0-1.0]  

 

mvalue  Priority value of mission m [1-5] 

 

mthresh   Threshold fraction required for accomplishing mission m 

[0.0-1.0] 
 

, ',m m pd  Travel time required between missions (m,m’) per 

platform p [number of time periods t] 
 

pose
 
 On-station endurance of platform p [number of time 

periods t] 
 

pase
 
 At-sea endurance of platform p to be at sea or in the air 

[number of time periods t] 

k K

 p P

cC

t,c  TC           t, p  TP  p c
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pdt
 
 Amount of downtime required in port for platform p once 

pase
 
is exceeded [number of time periods t] 

4. Variables [Units] 

t, ,m kKACH  Achievement level k is feasible at time t for mission m 

[Binary] 
 

, ,t m cCACT
 

Combination of platforms c is chosen for mission m in t 

[Binary] 
 

 Mission m achievement meets or exceeds its threshold in 

time t [Binary] 
 

,t mMACT  Mission m has assets assigned at time t [Binary] 

 

, ,t m pASGND  Platform p is assigned to mission m at time t [Binary] 

 
 Mission m achievement is at or above level k in t and 

combination c is applied to mission m in t [Binary] 
 

  Platform p is employed in time t [Binary] 

 

  
Platform p is at sea in time t [Binary] 

 

,t pPDOWN
  

Platform p is in port or refueling in time t [Binary] 

DONE
t ,m

KCACT
k ,c,t ,m

EMPLYD
t ,p

ATSEA
t ,p
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5. Formulation NOP–USW 

      

 

   
 

 

, , , ,
, , ,

, , , , ,

, , 1, , ',
', : ', ,

, , , , ,

max 0.01 0.1 M0

. . , , , M1

, 1, M2

, , , M3

k

t m t m m k t m k
t m t m k

t k m c t m k t t

t m k t m k c t
k c k c m PRE

t c m k t m c t t

t

DONE MACT value a KACH

s t KCACT KACH k t m TM c TC

KACH KCACT k t m TM

KCACT CACT k t m TM c TC

CACT




 

   

   

   

 



 
 

 

 
 

 

, , , ,

, ,

, , ,

, , ,

, ,

, , , ,

, , , M4

1 , M5

, M6

, , M7

1 , M8

, , M9

t

t

t

m c t m p t t t

t m c t
c TC

t m t m p t
p TP

t m p t p t t

t m p t
m

t m p t m c t t
c TC

ASGND t m TM c TC p TP

CACT t m TM

MACT ASGND t m TM

ASGND EMPLYD t m TM p TP

ASGND t p TP

ASGND CACT t m TM p TP







    

  

  

   

  

   









     
 

 

 
 

, , ',
', : ', ,

, , ,
:

, , ', ', '

' , ',

', '
'

1 , , M10

, M11

1 , , ', , ' : , M12

, ' , '

, ,

k m

p

t m k c t
k c k c m pre k

t m t m k t
k a thresh

t m p t m p t t

t t m m p

t p p t
t t ose

KCACT k t m TM

DONE KACH t m TM

ASGND ASGND p t t m m p TP TP

m TM m TM t t d

EMPLYD ose t p TP t





 

  

  

    

   

  





  

 

 
 

 
 

', '
'

, ,

',
'

, ,

, ,

M13

, , M14

, M15

, , M16

1 , , M17

1 , M18

p

p

p

p

t p p p t p
t t ase

t p t p t

t p p t p
t t t dt

t p t dt p t p

t p t p t

ose

ATSEA pt ase t p TP t ase

EMPLYD ATSEA t p TP

PDOWN dt t p TP t T dt

PDOWN PDOWN t p TP t T dt

ATSEA PDOWN t p TP

 

  





    

  

    

     

   





 



 15

 
 
 
 
 
 
 
 

,

,

, , ,

, ,

, ,

, ,

,

,

,

0,1 ,

0,1 ,

0,1 , , ,

0,1 , ,

0,1 , ,

0,1 , ,

0,1 ,

0,1 ,

0,

t m t

t m t

t k m c t t

t m k t

t m c t t

t m p t t

t p t

t p t

t p

DONE t m TM

MACT t m TM

KCACT t m TM k c TC

KACH t m TM k

CACT t m TM c TC

ASGND t m TM p TP

EMPLYD t p TP

ATSEA t p TP

PDOWN

  

  

   

  

   

   

  

  

 1 , tt p TP 

  

 

6. Discussion 

a. Objective 

The objective, equation (M0), calculates the level of achievement of 

missions achieved with a bonus for completing missions to their threshold and a 

penalty for not actively working missions.  

b. Achievement Constraints 

 

Equation (M1) forces the level of achievement k to 1 if a (k,c) combination 

is activated and equation (M10) only allows one of k’s predecessors to be 

activated. From equation (M2), a level of achievement can only be activated if a 

combination in its pre(k) is activated. equation (M3) only allows a combination to 

be activated if a corresponding k has been achieved. In equation (M4) if a 

combination is activated for a mission all of the associated platforms are 

activated and in equation (M5) only one combination can be activated per 

mission. Equation (M6) will only allow a mission to be active if a platform is 

assigned. From equation (M7), if a platform is assigned to at least one mission 

that platform is considered employed in the time period. Equation (M8) ensures a 

platform is only assigned once per mission. Equation (M9) only allows a platform 
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to be assigned if a combination containing it has been activated. Equation (M11) 

tracks the completion of missions. 

c. Logistic Constraints 

Equation (M12) prevents platforms from being considered assigned if they 

are transiting between missions. Equation (M13) will not allow platforms to 

perform a mission longer than their on station endurance. An example of a factor 

that would limit endurance is sonobuoy endurance deployed from an aircraft. 

Equation (M14) prevents a platform from being at sea longer than its at-sea 

endurance. This constraint assumes there is an average amount of time that a 

platform takes to go from mission areas to the nearest port. Equation (M15) 

ensures that only a platform at sea can be considered employed. Equation (M16) 

and equation (M17) dictate that if a platform is in port it must be in port for a set 

amount of time and those time steps must be continuous. Equation (M18) 

ensures that the platform is either at sea or in port. 
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III. RESULTS 

A. GENERAL INFORMATION FOR ALL SCENARIOS 

The scenario we used for testing our model is a region with four missions 

where area search is required against a generic enemy submarine. The assets 

available are a submarine, referred to as “sub,” a surface ship (“ship”), and a 

maritime patrol aircraft (MPA) (“p8”). The missions vary by depth in order to have 

variation in sweep width (W) of the platform and in surface area to illustrate 

different tactical inputs to the model. We assume the enemy submarine has one 

of two speeds, 1 kt and 15 kts, in order to give conservative tactical estimates 

depending on the tactical model used. Each time period represents 6 hours, and 

we have 36 periods for a total available time horizon of 9 days (see Tables 1–4.) 

1. Data 

a. Mission information 

We included depth and area to highlight the model’s ability to handle 

performance variations of a particular platform’s sensors while conducting 

different missions. The threshold and value are inputs made by the commander 

and his staff.  

Table 1.   Specific Mission Information 

m Depth Area mthresh  mvalue  

Mission 1 250 m 4700 sq. nm 0.85 2
Mission 2 300 m 3000 sq. nm 0.83 5
Mission 3 100 m 1000 sq. nm 0.81 3
Mission 4 100 m 1200 sq. nm 0.86 4
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Table 2.   Distance Between Missions 

Mission 2 Mission 3 Mission 4 
Mission 1 100 nm 100 nm 0 nm 
Mission 2 150 nm 100 nm 
Mission 3 100 nm 

 

b. Platform Information 

The option of having a convergence zone (CZ) or direct path (DP) sweep 

width is a function of the depth associated with a mission. Missions that have 

depth less than 200 m limit platforms to DP and greater than 200 m allow CZ. 

Table 3.   Waterborne Vehicles 

  Ship 1 Sub 1 
Speed 15 kts 12 kts 
W CZ 35 nm 35 nm 
W DP 1.5 nm 2 nm 
At-sea endurance 336 hrs 672 hrs 
Availability 12 hrs 36 hrs 

 

The air asset for the scenario is assumed to only be able to control 24 

buoys at one time for 6 hours. 

Table 4.   Airborne Vehicle 

  Air 1 
Speed 300 kts 
On-station endurance6 hrs 
At-sea endurance 12 hrs 
W buoy 2.5 nm 
Controllable Buoys 24 
Availability 24 hrs 
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2. Tactics 

We used two tactical models in the scenario to develop pre(k) . The 

Random Search Model and the Stationary Sensor Model both provide a generic 

representation of how a sensor may perform in area searches. Both models are 

considered to provide lower bounds for the performance of any reasonable 

search scheme. 

a. Random Search 

The Random search model is a probability model based on the on the 

time to increase coverage of a search area. The model relies on three inputs: 

sensor sweep width, size of the search area, and the speed of the searcher to 

determine probability of detection (Pd). Random search has the form 1 tPd e    

where 
 *

 

Sweep Width Velocity

Search Area
  . This model is used in any case where either the 

ship or submarine are searching alone or together. In the case where the 

searchers work together their respective   values are summed to create the 

resulting the exponent; this is a result of assuming that those platforms are 

searching the same area independently, and do not provide any extra (i.e., 

synergistic, through cueing) benefits to each other while searching. 

b. Stationary Sensor Search 

The stationary sensor model is used to model the tactics of the MPA. The 

stationary sensor model is slightly different in that it relies on the enemy speed 

and accounts for the instantaneous gain in cumulative probability of detection 

when the sensor is initially activated in the search area. Stationary search has 

the form 
*

1 1 tB

T

N A
Pd e

A
 

   
 

 where  is the number of buoys,  is the 

square area of the sweep width,  is the search area, and 

  *  

 

Sensor Sweep Width Target Velocity

Search Area
  . In this scenario the MPA never searches 

N AB

AT
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alone and only enhances the search of the other two platforms. In the case 

where the platforms are combined the model has the form 

( ... )*
1 1 sub ship tB

T

N A
Pd e

A
      

   
 

.  

c. Other Models 

There are several other search models that could have been used in NOP. 

Barrier search, spiral search, and mine clearance are examples of other models 

that can work as inputs to NOP–USW. The limiting factor for choosing models is 

if they can be represented as a CDP, whether step-wise or continuous. This 

feature is what will allow NOP–USW to be integrated with systems like USW–

DSS. 

B. SCENARIO RESULT 

The model was implemented using Pyomo (Hart, Laird, Watson, and 

Woodruff, 2011) and solved using the Gurobi solver (Gurobi Optimization, Inc. 

2016). All model runs were conducted using a 1.3Ghz Intel Core i5 processor 

with 4.0 GB of RAM, running the OSX Version 10.9.5 operating system. The 

main scenario model has 74,758 equations and 63,035 binary variables, all of 

which are binary. The model formulation for our main scenario solves within 

5,501 seconds at a 293% optimality gap. This scheduling problem is difficult to 

solve to optimality, but after looking at the resulting solutions it seems that the 

model is having the most trouble reducing the upper bound; the solutions 

themselves seem to be reasonably close to an optimal schedule. 

1. Platform schedule 

The resulting schedule is shown in Table 5. It appears that platforms do 

not change between missions unless there is little time cost between them such 

as with missions 1 and 4. 



 21

Table 5.   Platform Schedule 

   t6  t7  t8  t9  t10  t11  t12  t13  t14  t15  t16  t17  t18  t19  t20 

Ship  m2                 m2     m2  m2  m2  m2  m2  m2  m2 

Sub     m2  m2  m2  m2  m2     m2     m1  m1  m1  m1  m1  m1 

MPA              m2           m2                   
 

   t21  t22  t23  t24  t25  t26  t27  t28  t29  t30  t31  t32  t33  t34  t35 

Ship  m2  m2  m2  m2  m2  m2  m2  m2  m2  m2  m2  m2  m2  m2  m2 

Sub  m1     m1  m1  m1  m1  m1  m4  m1  m1     m1  m1  m1    

MPA  m2                 m2        m1        m1  m1  m2 
 

2. Mission Achievement 

Figure 8 shows the level of achievement for each mission. The random 

search model, stationary sensor model, and decay are apparent in the graph. 

The effect of mutual exclusion between mission 1 and mission 4 is seen at time 

step 24. Because of the high value of mission 2 it is constantly pursued where as 

mission 1 has a lower value and effort only brings the achievement above the 

threshold. We do not have enough assets to pursue all missions simultaneously, 

and so we see that the solution found by the model does not put much effort at 

all into the lowest priority mission. 

Figure 8.  Mission Progress 
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IV. CONCLUSION 

A. SUMMARY 

NOP–USW is a planning aid to complement manual operational planning 

efforts. NOP–USW suggests the correct allocation of assets across a wide 

theater of operation to accomplish missions in the most efficient manner. It also 

gives the commander a notion of the time and effort it will take to advance to the 

next phase of operations. This knowledge can help a commander understand the 

tradeoffs in the balance of time, space, and force in a maritime environment. 

NOP–USW establishes a proof-of-concept of an integer linear 

programming model for operational planning that provides one possible 

architecture to link current tactical models to campaign planning, and accounts 

for both mission requirements and logistics. 

B. APPLICABLE SCENARIO EXAMPLES 

The scenarios that can be evaluated by this model are only limited by 

creativity. The example tested in this thesis was a simple search scenario. 

However, the model is designed to handle far more complicated scenarios. It 

allows time phasing of the missions, which accommodates the strategic 

continuum of ASW to stop the enemy in port, defeat them at choke points, defeat 

them in the open ocean, and then defend allied assets. Time phasing of missions 

also allows for the planning of clearing a minefield before campaigns begin.  

In homeland defense responding to a MIW threat can be incredibly difficult 

to plan when the number of ports threatened becomes more than, say, two. 

However, the CDP for clearing harbors, the acceptable level of risk, and travel 

times between ports are well known or are being actively studied and would fit 

easily into NOP–USW.  

Unmanned undersea vehicles are developing at a remarkable rate. With 

their development comes the question of how to have command and control and 
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how to plan their effective use. Because the mission algorithms and parameters 

for UUVs are preprogrammed, NOP–USW can be used immediately to plan the 

employment of hundreds of them. 

C. FOLLOW ON WORK 

1. In-Depth Analysis in Other Warfare Areas 

Analysis of other maritime warfare areas must be conducted for NOP to 

realize the complexity of maritime operational planning. Integrating the concept of 

levels of achievement and preceding sets, as the mechanism for achievement 

into models for other warfare areas is a significant next step. This will allow the 

creation of an NOP that includes multiple warfare areas interacting.  

2. Model improvements 

a. Further Testing 

Varying scenarios should be run through the model to test its robustness as 

well as to identify any minor issues with the formulation. Variations should include 

changing distances between missions to ensure tradeoffs in platform logistics 

reflect real world decisions. Testing mutually exclusive missions will require a 

significant amount of pre-processing data and possible adjustment to the 

formulation. Two other items that should be varied in order to test the flexibility and 

robustness of the model are the number and type of assets, and number of 

missions. 

b. Slow Run Times 

There are several factors that lead to slow run time. The number of 

variables is the largest contributor. This is in part due to the resolution of 

achievement levels. Future research should include finding the optimal resolution 

depending on the tactics used for input and other areas that can lead to faster 

run times. It should also include reformulating certain constraints to reduce the 

total number of equations. Finally, future research should explore adding cuts to 

reduce complexity and increasing speed.  
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c. Weighting 

The components of the objective are weighted. Further research should 

explore ways of determining appropriate weights of these components to improve 

the usability of the model for campaign analysis. This weighting will include 

capturing concepts like commander’s intent and whether missions involve 

durable achievement (i.e., once a mission has been “completed,” we do not have 

to worry about it again) or whether any progress, even that above a threshold, is 

a transient achievement and needs to be maintained to the end of the model 

planning horizon. 

d. Improving the Logistic Component (Average Time in Port) 

Adding port/platform indexing and a distance component to the downtime 

for platforms will be an important addition to increase the fidelity of the model.  

e. Moving Missions (HVU) 

Adding an option to make distance between missions a function of time 

would allow the concept of missions surrounding the transit of a high value unit to 

be included. The distance data will have to be indexed by time as well as by 

mission pairs and platform. Also, platform speed will have to be carefully 

considered in deciding if it is possible for a platform to get on station and remain 

a contributor for any significant mission duration. 

3. Integrating Tactical Systems 

A logical final step is to integrate our model with existing tactical decision 

aids such as USW–DSS. This will take a level of effort beyond the scope of a 

single master’s thesis, but could be handled by skilled software developers 

working in conjunction with the appropriate command. For integrating with USW–

DSS, Undersea Warfare Development Center detachment San Diego is the 

appropriate contact. 
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